Skip to contents

listDeByTool: creates a data.frame with genes (rows) and DE tools (columns). Each tool that identifies a gene as DE is marked with 1.

Usage

listDeByTool(consexpressionList, geneNames, deList)

Arguments

consexpressionList

An ExpressionResultSet object with DE results.

geneNames

Character vector. Names of all genes in the experiment.

deList

List. Each element contains a character vector with DE gene names (from each tool).

Value

A data.frame with genes as rows and tools as columns; 1 indicates DE by that tool.

Examples

data(gse95077)
treats <- c("BM", "JJ")
cons_result <- runExpression(numberReplics = 3, groupName = treats, rDataFrameCount = gse95077, controlDeseq2 = "BM", contrastDeseq2 = "JJ" )
#> Using classic mode.
#> Getting annotation of the Homo Sapiens...
#> Using reference genome 38.
#> Calculating gene expression values...
#> RQ fit ......
#> SQN 
#> 
#>  
#>  ===== ERROR: KnowSeq execution is failed === 
#> Error in mclustBIC(data = structure(c(-3.52446659876917, -2.42801002792396, : could not find function "mclustBIC"
#> 
#> Removing intercept from test coefficients
#> 
#>  ------------ limma executed!
#> [1] "Computing (M,D) values..."
#> [1] "Computing probability of differential expression..."
#> 
#>  ------------ NOISeq executed! 
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Initial number of DE patterns = 2
#> Final number of DE patterns = 2
#> 
#>  ------------ EBSeq executed!
#> Warning: some variables in design formula are characters, converting to factors
#> Dataset is COUNT data
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#> 
#>  ------------ DESeq2 executed!
#> Estimating sequencing depths...
#> Resampling to get new data matrices...
#> perm= 1
#> perm= 2
#> perm= 3
#> perm= 4
#> perm= 5
#> perm= 6
#> perm= 7
#> perm= 8
#> perm= 9
#> perm= 10
#> perm= 11
#> perm= 12
#> perm= 13
#> perm= 14
#> perm= 15
#> perm= 16
#> perm= 17
#> perm= 18
#> perm= 19
#> perm= 20
#> perm= 21
#> perm= 22
#> perm= 23
#> perm= 24
#> perm= 25
#> perm= 26
#> perm= 27
#> perm= 28
#> perm= 29
#> perm= 30
#> perm= 31
#> perm= 32
#> perm= 33
#> perm= 34
#> perm= 35
#> perm= 36
#> perm= 37
#> perm= 38
#> perm= 39
#> perm= 40
#> perm= 41
#> perm= 42
#> perm= 43
#> perm= 44
#> perm= 45
#> perm= 46
#> perm= 47
#> perm= 48
#> perm= 49
#> perm= 50
#> perm= 51
#> perm= 52
#> perm= 53
#> perm= 54
#> perm= 55
#> perm= 56
#> perm= 57
#> perm= 58
#> perm= 59
#> perm= 60
#> perm= 61
#> perm= 62
#> perm= 63
#> perm= 64
#> perm= 65
#> perm= 66
#> perm= 67
#> perm= 68
#> perm= 69
#> perm= 70
#> perm= 71
#> perm= 72
#> perm= 73
#> perm= 74
#> perm= 75
#> perm= 76
#> perm= 77
#> perm= 78
#> perm= 79
#> perm= 80
#> perm= 81
#> perm= 82
#> perm= 83
#> perm= 84
#> perm= 85
#> perm= 86
#> perm= 87
#> perm= 88
#> perm= 89
#> perm= 90
#> perm= 91
#> perm= 92
#> perm= 93
#> perm= 94
#> perm= 95
#> perm= 96
#> perm= 97
#> perm= 98
#> perm= 99
#> perm= 100
#> Number of thresholds chosen (all possible thresholds) = 8
#> Getting all the cutoffs for the thresholds...
#> Getting number of false positives in the permutation...
#> 
#>  ------------ SAMSeq executed!
#> 
#>  ------------ DIFERENTIAL EXPRESSION ANALYSIS WAS COMPLETE!
expDef_result <- expressionDefinition(resultTool = cons_result, groups = treats)
deByTool <- listDeByTool(cons_result, geneNames = rownames(gse95077), deList = expDef_result)

#      DESeq2 limma edgeR
# gene1      1     1     1
# gene2      0     0     1
# gene3      1     0     1
# gene4      0     1     0
# gene5      0     0     0
# gene6      1     1     1