Make expression analysis of 7 tools, and return a list of results by each tool.
Source:R/runExpression.R
runExpression.Rd
Make expression analysis of 7 tools, and return a list of results by each tool.
Usage
runExpression(
numberReplics,
groupName,
tableCountPath = "data/gse95077.csv",
sepCharacter = ",",
rDataFrameCount = NULL,
experimentName = "genericExperiment",
outDirPath = "../../consexpression2_results/",
printResults = FALSE,
fitTypeDeseq2 = "local",
controlDeseq2 = "",
contrastDeseq2 = "",
methodNormLimma = "TMM",
methodAdjPvalueLimma = "BH",
numberTopTableLimma = 1e+06,
filterIdKnowseq = "ensembl_gene_id",
notSapiensKnowseq = FALSE,
methodNormEdgeR = "TMM",
normNoiseq = "rpkm",
kNoiseq = 0.5,
factorNoiseq = "Tissue",
lcNoiseq = 0,
replicatesNoiseq = "technical",
condExpNoiseq = c(""),
respTypeSamseq = "Two class unpaired",
npermSamseq = 100,
fdrEbseq = 0.05,
maxRoundEbseq = 50,
methodDeResultsEbseq = "robust",
deNovoAanalysis = FALSE,
progressShiny = NULL
)
Arguments
- numberReplics
number of replicate (technical or biological) by sample
- groupName
text, name of samples or treatment
- tableCountPath
path to csv file that contains count data or abundance data (local)
- sepCharacter
character used to split csv data, can be comma or tab
- rDataFrameCount
RData object with table count, where line name is gene name, and name column is treat name
- experimentName
text, name of experiment
- outDirPath
path to write output, need be a directory (local)
- printResults
logical variable: TRUE print report by each tool, FALSE print only consensus result
- fitTypeDeseq2
either "parametric", "local", "mean", or "glmGamPoi" for the type of fitting of dispersions to the mean intensity
- controlDeseq2
group of samples that represents control in experiment, used by DESeq2; Default is "".
- contrastDeseq2
specific reference level that you need compare (this name should be in groupName List)
- methodNormLimma
normalization method to be used (limma)
- methodAdjPvalueLimma
correction method, a character string. Can be abbreviated (limma)
- numberTopTableLimma
maximum number of genes to list (limma)
- filterIdKnowseq
The attribute used as filter to return the rest of the attributes.
- notSapiensKnowseq
A boolean value that indicates if the user wants the human annotation or another annotation available in BiomaRt. The possible not human dataset can be consulted by calling the following function: biomaRt::listDatasets(useMart("ensembl")).
- methodNormEdgeR
normalization method to be used in edgeR::calcNormFactors(), default: "TMM"
- normNoiseq
Normalization method t can be one of "rpkm" (default), "uqua" (upper quartile), "tmm" (trimmed mean of M) or "n" (no normalization). Default: "rpkm".
- kNoiseq
Counts equal to 0 are replaced by k. By default, k = 0.5
- factorNoiseq
A string indicating the name of factor whose levels are the conditions to be compared.
- lcNoiseq
Length correction is done by dividing expression by length^lc. By default, lc = 0
- replicatesNoiseq
In this argument, the type of replicates to be used is defined: "technical", "biological" or "no" replicates. By default, "technical" replicates option is chosen.
- condExpNoiseq
A vector containing the two conditions to be compared by the differential expression algorithm (needed when the factor contains more than 2 different conditions).
- respTypeSamseq
Problem type: "Quantitative" for a continuous parameter; "Two class unpaired" for two classes with unpaired observations; "Survival" for censored survival outcome; "Multiclass": more than 2 groups; "Two class paired" for two classes with paired observations. Default: "Two class unpaired".
- npermSamseq
Number of permutations used to estimate false discovery rates. Default 100
- fdrEbseq
parameter used in EBTest function: fdr False Discovery Rate cutt off
- maxRoundEbseq
parameter used in EBTest function: Number of iterations. The default value is 50.
- methodDeResultsEbseq
parameter used in GetDEResults function: "robust" or "classic". Using the "robust" option, EBSeq is more robust to genes with outliers and genes with extremely small variances. Using the "classic" option, the results will be more comparable to those obtained by using the GetPPMat() function from earlier version (<= 1.7.0) of EBSeq
- deNovoAanalysis
boolean value (TRUE if dataset don`t have a reference genome)
- progressShiny
shiny app element, used to show execution progress
Examples
data(gse95077)
treats = c("BM", "JJ")
cons_result <- runExpression(numberReplics = 3,
groupName = treats,
rDataFrameCount = gse95077,
sepCharacter = ",",
experimentName = "test_cons",
controlDeseq2 = "BM",
contrastDeseq2 = "JJ",
outDirPath = "." )
#> Using classic mode.
#> Getting annotation of the Homo Sapiens...
#> Using reference genome 38.
#> Calculating gene expression values...
#> RQ fit ......
#> SQN
#>
#>
#> ===== ERROR: KnowSeq execution is failed ===
#> Error in mclustBIC(data = structure(c(-3.52446659876917, -2.42801002792396, : could not find function "mclustBIC"
#>
#> Removing intercept from test coefficients
#>
#> ------------ limma executed!
#> [1] "Computing (M,D) values..."
#> [1] "Computing probability of differential expression..."
#>
#> ------------ NOISeq executed!
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Initial number of DE patterns = 2
#> Final number of DE patterns = 2
#>
#> ------------ EBSeq executed!
#> Warning: some variables in design formula are characters, converting to factors
#> [1] "Dataset is COUNT data"
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#>
#> ------------ DESeq2 executed!
#> Estimating sequencing depths...
#> Resampling to get new data matrices...
#> perm= 1
#> perm= 2
#> perm= 3
#> perm= 4
#> perm= 5
#> perm= 6
#> perm= 7
#> perm= 8
#> perm= 9
#> perm= 10
#> perm= 11
#> perm= 12
#> perm= 13
#> perm= 14
#> perm= 15
#> perm= 16
#> perm= 17
#> perm= 18
#> perm= 19
#> perm= 20
#> perm= 21
#> perm= 22
#> perm= 23
#> perm= 24
#> perm= 25
#> perm= 26
#> perm= 27
#> perm= 28
#> perm= 29
#> perm= 30
#> perm= 31
#> perm= 32
#> perm= 33
#> perm= 34
#> perm= 35
#> perm= 36
#> perm= 37
#> perm= 38
#> perm= 39
#> perm= 40
#> perm= 41
#> perm= 42
#> perm= 43
#> perm= 44
#> perm= 45
#> perm= 46
#> perm= 47
#> perm= 48
#> perm= 49
#> perm= 50
#> perm= 51
#> perm= 52
#> perm= 53
#> perm= 54
#> perm= 55
#> perm= 56
#> perm= 57
#> perm= 58
#> perm= 59
#> perm= 60
#> perm= 61
#> perm= 62
#> perm= 63
#> perm= 64
#> perm= 65
#> perm= 66
#> perm= 67
#> perm= 68
#> perm= 69
#> perm= 70
#> perm= 71
#> perm= 72
#> perm= 73
#> perm= 74
#> perm= 75
#> perm= 76
#> perm= 77
#> perm= 78
#> perm= 79
#> perm= 80
#> perm= 81
#> perm= 82
#> perm= 83
#> perm= 84
#> perm= 85
#> perm= 86
#> perm= 87
#> perm= 88
#> perm= 89
#> perm= 90
#> perm= 91
#> perm= 92
#> perm= 93
#> perm= 94
#> perm= 95
#> perm= 96
#> perm= 97
#> perm= 98
#> perm= 99
#> perm= 100
#> Number of thresholds chosen (all possible thresholds) = 7
#> Getting all the cutoffs for the thresholds...
#> Getting number of false positives in the permutation...
#>
#> ------------ SAMSeq executed!
#>
#> ------------ DIFERENTIAL EXPRESSION ANALYSIS WAS COMPLETE!
expDef_result <- expressionDefinition(resultTool = cons_result, groups = treats)