Define who genes are deferentially expressed by method
Source:R/expressionDefinition.R
expressionDefinition.Rd
Define who genes are deferentially expressed by method
Usage
expressionDefinition(
resultTool,
groups = c(""),
lfcMinLimma = -2,
lfcMaxLimma = 2,
pValueLimma = 0.05,
FLimma = 0.8,
lfcMinSamseq = -2,
lfcMaxSamseq = 2,
qValueSamseq = 0.05,
lfcMinDeseq2 = -2,
scoreDSamseq = 0.8,
lfcMaxDeseq2 = 2,
pValueDeseq2 = 0.05,
lfcMinEdger = -2,
lfcMaxEdger = 2,
pValueEdger = 0.05,
probNoiseq = 0.8,
lfcMinKnowseq = -2,
lfcMaxKnowseq = 2,
pValueKnowseq = 0.05,
deClassEbseq = "DE",
ppThresholdEbseq = 0.8,
printResults = FALSE,
pathOutput = "."
)
Arguments
- resultTool
table results by consexpressionR function
- groups
text, name of samples or treatment
- lfcMinLimma
minimum value to consider of log Fold Change (default: -2).
- lfcMaxLimma
maximum value to consider of log Fold Change (default: 2)
- pValueLimma
minimum P-Value to consider (default: 0.05)
- FLimma
The F statistics is used to test the null hypotheses of all groups have the same median of expression
- lfcMinSamseq
minimum value to consider of log Fold Change (default: -2).
- lfcMaxSamseq
maximum value to consider of log Fold Change (default: 2)
- qValueSamseq
q-value is a measure of the statistical significance of the difference in expression between the compared groups, taking the problem of multiple comparisons into account (default: 0.8)
- lfcMinDeseq2
minimum value to consider of log Fold Change (default: -2).
- scoreDSamseq
statistic used to evaluate the significance of each gene in multi class analysis
- lfcMaxDeseq2
maximum value to consider of log Fold Change (default: 2)
- pValueDeseq2
minimum P-Value to consider (default: 0.05)
- lfcMinEdger
minimum value to consider of log Fold Change (default: -2).
- lfcMaxEdger
maximum value to consider of log Fold Change (default: 2)
- pValueEdger
minimum P-Value to consider (default: 0.05)
- probNoiseq
floating point, minimum probability that a read count comes from a real gene expression peak, rather than background noiseq (default: 0.95)
- lfcMinKnowseq
minimum value to consider of log Fold Change (default: -2).
- lfcMaxKnowseq
maximum value to consider of log Fold Change (default: 2)
- pValueKnowseq
minimum P-Value to consider (default: 0.05)
- deClassEbseq
name of class to consider by EBSeq (default: "DE")
- ppThresholdEbseq
description
- printResults
logical variable: TRUE print report by each tool, FALSE print only consensus result
- pathOutput
path to write output, need be a directory (default: ".") #'
Examples
data(gse95077)
treats = c("BM", "JJ")
cons_result <- runExpression(numberReplics = 3,
groupName = treats,
rDataFrameCount = gse95077,
sepCharacter = ",",
experimentName = "test_cons",
controlDeseq2 = "BM",
contrastDeseq2 = "JJ",
outDirPath = "." )
#> Using classic mode.
#> Getting annotation of the Homo Sapiens...
#> Using reference genome 38.
#> Calculating gene expression values...
#> RQ fit ......
#> SQN
#>
#>
#> ===== ERROR: KnowSeq execution is failed ===
#> Error in mclustBIC(data = structure(c(-3.52446659876917, -2.42801002792396, : could not find function "mclustBIC"
#>
#> Removing intercept from test coefficients
#>
#> ------------ limma executed!
#> [1] "Computing (M,D) values..."
#> [1] "Computing probability of differential expression..."
#>
#> ------------ NOISeq executed!
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#> ℹ Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Initial number of DE patterns = 2
#> Final number of DE patterns = 2
#>
#> ------------ EBSeq executed!
#> Warning: some variables in design formula are characters, converting to factors
#> [1] "Dataset is COUNT data"
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#>
#> ------------ DESeq2 executed!
#> Estimating sequencing depths...
#> Resampling to get new data matrices...
#> perm= 1
#> perm= 2
#> perm= 3
#> perm= 4
#> perm= 5
#> perm= 6
#> perm= 7
#> perm= 8
#> perm= 9
#> perm= 10
#> perm= 11
#> perm= 12
#> perm= 13
#> perm= 14
#> perm= 15
#> perm= 16
#> perm= 17
#> perm= 18
#> perm= 19
#> perm= 20
#> perm= 21
#> perm= 22
#> perm= 23
#> perm= 24
#> perm= 25
#> perm= 26
#> perm= 27
#> perm= 28
#> perm= 29
#> perm= 30
#> perm= 31
#> perm= 32
#> perm= 33
#> perm= 34
#> perm= 35
#> perm= 36
#> perm= 37
#> perm= 38
#> perm= 39
#> perm= 40
#> perm= 41
#> perm= 42
#> perm= 43
#> perm= 44
#> perm= 45
#> perm= 46
#> perm= 47
#> perm= 48
#> perm= 49
#> perm= 50
#> perm= 51
#> perm= 52
#> perm= 53
#> perm= 54
#> perm= 55
#> perm= 56
#> perm= 57
#> perm= 58
#> perm= 59
#> perm= 60
#> perm= 61
#> perm= 62
#> perm= 63
#> perm= 64
#> perm= 65
#> perm= 66
#> perm= 67
#> perm= 68
#> perm= 69
#> perm= 70
#> perm= 71
#> perm= 72
#> perm= 73
#> perm= 74
#> perm= 75
#> perm= 76
#> perm= 77
#> perm= 78
#> perm= 79
#> perm= 80
#> perm= 81
#> perm= 82
#> perm= 83
#> perm= 84
#> perm= 85
#> perm= 86
#> perm= 87
#> perm= 88
#> perm= 89
#> perm= 90
#> perm= 91
#> perm= 92
#> perm= 93
#> perm= 94
#> perm= 95
#> perm= 96
#> perm= 97
#> perm= 98
#> perm= 99
#> perm= 100
#> Number of thresholds chosen (all possible thresholds) = 8
#> Getting all the cutoffs for the thresholds...
#> Getting number of false positives in the permutation...
#>
#> ------------ SAMSeq executed!
#>
#> ------------ DIFERENTIAL EXPRESSION ANALYSIS WAS COMPLETE!
expDef_result <- expressionDefinition(resultTool = cons_result, groups = treats)