Skip to contents

Define who genes are deferentially expressed by method

Usage

expressionDefinition(
  resultTool,
  groups = c(""),
  lfcMinLimma = -2,
  lfcMaxLimma = 2,
  pValueLimma = 0.05,
  FLimma = 0.8,
  lfcMinSamseq = -2,
  lfcMaxSamseq = 2,
  qValueSamseq = 0.05,
  lfcMinDeseq2 = -2,
  scoreDSamseq = 0.8,
  lfcMaxDeseq2 = 2,
  pValueDeseq2 = 0.05,
  lfcMinEdger = -2,
  lfcMaxEdger = 2,
  pValueEdger = 0.05,
  probNoiseq = 0.8,
  lfcMinKnowseq = -2,
  lfcMaxKnowseq = 2,
  pValueKnowseq = 0.05,
  deClassEbseq = "DE",
  ppThresholdEbseq = 0.8,
  printResults = FALSE,
  pathOutput = "."
)

Arguments

resultTool

table results by consexpressionR function

groups

text, name of samples or treatment

lfcMinLimma

minimum value to consider of log Fold Change (default: -2).

lfcMaxLimma

maximum value to consider of log Fold Change (default: 2)

pValueLimma

minimum P-Value to consider (default: 0.05)

FLimma

The F statistics is used to test the null hypotheses of all groups have the same median of expression

lfcMinSamseq

minimum value to consider of log Fold Change (default: -2).

lfcMaxSamseq

maximum value to consider of log Fold Change (default: 2)

qValueSamseq

q-value is a measure of the statistical significance of the difference in expression between the compared groups, taking the problem of multiple comparisons into account (default: 0.8)

lfcMinDeseq2

minimum value to consider of log Fold Change (default: -2).

scoreDSamseq

statistic used to evaluate the significance of each gene in multi class analysis

lfcMaxDeseq2

maximum value to consider of log Fold Change (default: 2)

pValueDeseq2

minimum P-Value to consider (default: 0.05)

lfcMinEdger

minimum value to consider of log Fold Change (default: -2).

lfcMaxEdger

maximum value to consider of log Fold Change (default: 2)

pValueEdger

minimum P-Value to consider (default: 0.05)

probNoiseq

floating point, minimum probability that a read count comes from a real gene expression peak, rather than background noiseq (default: 0.95)

lfcMinKnowseq

minimum value to consider of log Fold Change (default: -2).

lfcMaxKnowseq

maximum value to consider of log Fold Change (default: 2)

pValueKnowseq

minimum P-Value to consider (default: 0.05)

deClassEbseq

name of class to consider by EBSeq (default: "DE")

ppThresholdEbseq

description

printResults

logical variable: TRUE print report by each tool, FALSE print only consensus result

pathOutput

path to write output, need be a directory (default: ".") #'

Examples

data(gse95077)
treats = c("BM", "JJ")
cons_result <- runExpression(numberReplics = 3,
                              groupName = treats,
                              rDataFrameCount = gse95077,
                              sepCharacter = ",",
                              experimentName = "test_cons",
                              controlDeseq2 = "BM",
                              contrastDeseq2 = "JJ",
                              outDirPath = "." )
#> Using classic mode.
#> Getting annotation of the Homo Sapiens...
#> Using reference genome 38.
#> Calculating gene expression values...
#> RQ fit ......
#> SQN 
#> 
#>  
#>  ===== ERROR: KnowSeq execution is failed === 
#>  Error in mclustBIC(data = structure(c(-3.52446659876917, -2.42801002792396, : could not find function "mclustBIC"
#>  
#> Removing intercept from test coefficients
#> 
#>  ------------ limma executed!
#> [1] "Computing (M,D) values..."
#> [1] "Computing probability of differential expression..."
#> 
#>  ------------ NOISeq executed! 
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Initial number of DE patterns = 2
#> Final number of DE patterns = 2
#> 
#>  ------------ EBSeq executed!
#> Warning: some variables in design formula are characters, converting to factors
#> [1] "Dataset is COUNT data"
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#> 
#>  ------------ DESeq2 executed!
#> Estimating sequencing depths...
#> Resampling to get new data matrices...
#> perm= 1
#> perm= 2
#> perm= 3
#> perm= 4
#> perm= 5
#> perm= 6
#> perm= 7
#> perm= 8
#> perm= 9
#> perm= 10
#> perm= 11
#> perm= 12
#> perm= 13
#> perm= 14
#> perm= 15
#> perm= 16
#> perm= 17
#> perm= 18
#> perm= 19
#> perm= 20
#> perm= 21
#> perm= 22
#> perm= 23
#> perm= 24
#> perm= 25
#> perm= 26
#> perm= 27
#> perm= 28
#> perm= 29
#> perm= 30
#> perm= 31
#> perm= 32
#> perm= 33
#> perm= 34
#> perm= 35
#> perm= 36
#> perm= 37
#> perm= 38
#> perm= 39
#> perm= 40
#> perm= 41
#> perm= 42
#> perm= 43
#> perm= 44
#> perm= 45
#> perm= 46
#> perm= 47
#> perm= 48
#> perm= 49
#> perm= 50
#> perm= 51
#> perm= 52
#> perm= 53
#> perm= 54
#> perm= 55
#> perm= 56
#> perm= 57
#> perm= 58
#> perm= 59
#> perm= 60
#> perm= 61
#> perm= 62
#> perm= 63
#> perm= 64
#> perm= 65
#> perm= 66
#> perm= 67
#> perm= 68
#> perm= 69
#> perm= 70
#> perm= 71
#> perm= 72
#> perm= 73
#> perm= 74
#> perm= 75
#> perm= 76
#> perm= 77
#> perm= 78
#> perm= 79
#> perm= 80
#> perm= 81
#> perm= 82
#> perm= 83
#> perm= 84
#> perm= 85
#> perm= 86
#> perm= 87
#> perm= 88
#> perm= 89
#> perm= 90
#> perm= 91
#> perm= 92
#> perm= 93
#> perm= 94
#> perm= 95
#> perm= 96
#> perm= 97
#> perm= 98
#> perm= 99
#> perm= 100
#> Number of thresholds chosen (all possible thresholds) = 8
#> Getting all the cutoffs for the thresholds...
#> Getting number of false positives in the permutation...
#> 
#>  ------------ SAMSeq executed!
#> 
#>  ------------ DIFERENTIAL EXPRESSION ANALYSIS WAS COMPLETE!
expDef_result <- expressionDefinition(resultTool = cons_result, groups = treats)