Skip to contents

Applies specific filtering rules to each expression method result in the ExpressionResultSet object and returns the DE genes per tool.

Usage

expressionDefinition(
  resultTool,
  groups = c(""),
  lfcMinLimma = -2,
  lfcMaxLimma = 2,
  pValueLimma = 0.05,
  FLimma = 0.8,
  lfcMinSamseq = -2,
  lfcMaxSamseq = 2,
  qValueSamseq = 0.05,
  scoreDSamseq = 0.8,
  lfcMinDeseq2 = -2,
  lfcMaxDeseq2 = 2,
  pValueDeseq2 = 0.05,
  lfcMinEdger = -2,
  lfcMaxEdger = 2,
  pValueEdger = 0.05,
  probNoiseq = 0.8,
  lfcMaxKnowseq = 2,
  lfcMinKnowseq = -2,
  pValueKnowseq = 0.05,
  deClassEbseq = "DE",
  ppThresholdEbseq = 0.8,
  printResults = FALSE,
  pathOutput = "."
)

Arguments

resultTool

An ExpressionResultSet object.

groups

Character vector of group names or conditions.

lfcMinLimma, ..., ppThresholdEbseq

Numeric thresholds used per method (see details).

printResults

Logical. Whether to write results to disk.

pathOutput

Character. Directory path to save result tables.

Value

A list of data.frames with DE genes per method.

Examples

data(gse95077)
treats <- c("BM", "JJ")
res <- runExpression(numberReplics = 3, groupName = treats, rDataFrameCount = gse95077, controlDeseq2 = "BM", contrastDeseq2 = "JJ" )
#> Using classic mode.
#> Getting annotation of the Homo Sapiens...
#> Using reference genome 38.
#> Calculating gene expression values...
#> RQ fit ......
#> SQN 
#> 
#>  
#>  ===== ERROR: KnowSeq execution is failed === 
#> Error in mclustBIC(data = structure(c(-3.52446659876917, -2.42801002792396, : could not find function "mclustBIC"
#> 
#> Removing intercept from test coefficients
#> 
#>  ------------ limma executed!
#> [1] "Computing (M,D) values..."
#> [1] "Computing probability of differential expression..."
#> 
#>  ------------ NOISeq executed! 
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Warning: `expect_is()` was deprecated in the 3rd edition.
#>  Use `expect_type()`, `expect_s3_class()`, or `expect_s4_class()` instead
#> Initial number of DE patterns = 2
#> Final number of DE patterns = 2
#> 
#>  ------------ EBSeq executed!
#> Warning: some variables in design formula are characters, converting to factors
#> Dataset is COUNT data
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
#> 
#>  ------------ DESeq2 executed!
#> Estimating sequencing depths...
#> Resampling to get new data matrices...
#> perm= 1
#> perm= 2
#> perm= 3
#> perm= 4
#> perm= 5
#> perm= 6
#> perm= 7
#> perm= 8
#> perm= 9
#> perm= 10
#> perm= 11
#> perm= 12
#> perm= 13
#> perm= 14
#> perm= 15
#> perm= 16
#> perm= 17
#> perm= 18
#> perm= 19
#> perm= 20
#> perm= 21
#> perm= 22
#> perm= 23
#> perm= 24
#> perm= 25
#> perm= 26
#> perm= 27
#> perm= 28
#> perm= 29
#> perm= 30
#> perm= 31
#> perm= 32
#> perm= 33
#> perm= 34
#> perm= 35
#> perm= 36
#> perm= 37
#> perm= 38
#> perm= 39
#> perm= 40
#> perm= 41
#> perm= 42
#> perm= 43
#> perm= 44
#> perm= 45
#> perm= 46
#> perm= 47
#> perm= 48
#> perm= 49
#> perm= 50
#> perm= 51
#> perm= 52
#> perm= 53
#> perm= 54
#> perm= 55
#> perm= 56
#> perm= 57
#> perm= 58
#> perm= 59
#> perm= 60
#> perm= 61
#> perm= 62
#> perm= 63
#> perm= 64
#> perm= 65
#> perm= 66
#> perm= 67
#> perm= 68
#> perm= 69
#> perm= 70
#> perm= 71
#> perm= 72
#> perm= 73
#> perm= 74
#> perm= 75
#> perm= 76
#> perm= 77
#> perm= 78
#> perm= 79
#> perm= 80
#> perm= 81
#> perm= 82
#> perm= 83
#> perm= 84
#> perm= 85
#> perm= 86
#> perm= 87
#> perm= 88
#> perm= 89
#> perm= 90
#> perm= 91
#> perm= 92
#> perm= 93
#> perm= 94
#> perm= 95
#> perm= 96
#> perm= 97
#> perm= 98
#> perm= 99
#> perm= 100
#> Number of thresholds chosen (all possible thresholds) = 8
#> Getting all the cutoffs for the thresholds...
#> Getting number of false positives in the permutation...
#> 
#>  ------------ SAMSeq executed!
#> 
#>  ------------ DIFERENTIAL EXPRESSION ANALYSIS WAS COMPLETE!
expDef <- expressionDefinition(resultTool = res, groups = treats)